**Advanced Distributed Simulation** 

# **ModSAF & Friends**

Andy Ceranowicz 8/7/96

## **ModSAF**

- Populates the stage for virtual battlefield simulation
- A repository for virtual simulation
  - Simulation, PVD, Network Interface, Terrain, Stealth, Logger
- Lies on the border of virtual and constructive simulation
- Some statistics
  - Development started: Spring 92
  - Last released version: ModSAF 2.1, May 96
  - Current size (July 96)
    - Files 483
    - Code 852K lines (source only)
    - Data 535K lines
    - Doc 275K lines

## **Federates**

### • Siblings

- ModSAF (Army, Air Force, Synthetic Environment, OPFOR)
- Navy SAF (Navy, Synthetic Environment, OPFOR)
- Marine SAF (Marines, Synthetic Environment, OPFOR)

#### In-Laws

- Soar (Rotary and Fixed Wing Pilots)
- Commander Forces (Army Ground, Army Aviation, Marine, Air Force)
- BBS
- Eagle

## **Simulation Requirements**

- Training
  - SIMNET, SIMITAR, ARMY STOW, DARPA STOW,
    Force XXI TP
- Analysis
  - A2ATD, JPSD, JCOS
- Acquisition
- Military Functions
  - Combat: Dismounted, Armored Vehicle, RWA, FWA, Littoral, Blue Water
  - C3 and Intel
  - Combat Support: Artillery, CAS, Engineers, Air Defense
  - Combat Service Support: Transportation and Supply, Repair,
    Recovery, Medical Evacuation

## **Mission**

- Conventional warfare moving toward MOUT
- ModSAF provides commands for
  - Individuals
  - Platoons
  - Companies

Higher level commands generate individual commands

• Command Forces generate orders for companies and battalions. These commanders generate orders for platoons and battalions respectively.

## **Unit State**

- ModSAF maintains own state by simulating individual vehicles and DI entities and the state of their supplies and equipment. This information is rolled up in the unit.
- Knowledge of enemy in ModSAF is accumulated through contact with enemy or reports from other units. CFOR can use intelligence reports in planning.
- Knowledge of adjacent units is available automatically but has very limited use in ModSAF.
- Communications is modeled by radio messages including CSSIL and by PO Messages.
- Support for misidentification exists but is not used by behaviors.

# **Physical Environment**

#### Terrain

- Enhanced DMA data
- No limitations on resolution 29 Palms uses 1 meter
- Upgrade to GCS will support world wide coverage
- ICTDB upgrades support multiple elevations and building interiors
- Dynamic terrain and objects in progress (supported by individual route maps, mine detection)
- Cultural targets

### Phenomenology Effects

- Time of day, real time gridded weather, smoke, vehicle dust
- Ocean and surf zone

# **Dynamic Behavioral Response**

#### Reactions

- Actions on contact
- Terrain obstacles
- Low level route planning

### Planning

- Finding concealed positions
- Human commander works with filtered map view and reports
- BBS commanders
- CFOR automated commanders

## **Architecture**

- ModSAF is primarily a HITL simulation. The human acts in the role of commander and provides the majority of the tactics and planning. HITL can be applied at all levels.
- ModSAF makes a strong separation between user interface and simulation. CFOR makes use of this boundary to build commander simulations that allows higher echelon automation.
- ModSAF also separate physical models and behavioral models. SOAR leverages this boundary to allow SOAR agents to control ModSAF entities.
- ModSAF is fully distributed with the ability to connect arbitrary numbers of simulations and user interfaces.

## **Architecture**

- All unit behavior is executed through orders to individuals. Aggregated units are controlled by other simulations.
- In a variable resolution simulation, entities are disaggregated when another entity sends out a disaggregation request or a defined high resolution are is encountered.
- Unit behavior is simulated using collections of tasks called task frames that spawn subordinate tasks. Most tasks use finite state machines and code to implement their behaviors.

## V&V and Data

- Many physical model implementations are of validated models
  - All weather (COMBIC, LOTRAN, ILUMA)
  - Target acquisition, delivery accuracy, damage
- AMSAA review of physical models
- TRAC review of behaviors
- Configuration control via ARMY CCB
- ARMY program to validate ModSAF
- Other services are working on validating other STOW SAFs

## **Lessons Learned**

- KISS
- Open system
- Top down modeling
- Physical/Behavioral model separation less important than resolution separation
- Less direct manipulation/more simulation
- Concentrate on making system SME accessible and modifiable
- More emphasis on C3, but remember top down modeling

## Where to Next?

More Research on Simulation - What Can It Really Tell Us?

- Interpretation of results
- Understanding resolution
- Interoperability
- Measurement: benchmarking and validation
- Predictive simulation
- Repositories and reuse